S-4-METHYLPHENYL-O,O-BIS[1-BENZOTRIAZOLYL]PHOSPHOROTHIOATE: A VERSATILE PHOSPHORYLATING **AGENT**

C.T.J. Wreesmann, A. Fidder, G.H. Veeneman, C.R. van der Mare1 and J.H. van Boom*

Gorlaeus Laboratories, PO-BOX 9502, 2300 RA Leiden, The Netherlands

Abstract: The phosphorylating agent obtained by treatment of S-4-methylphenyl phosphorodichloridothioate with 1-hydroxybenzotriazole can not only be applied for the introduction of polyphosphate functions at the terminal ends of nucleic acids, but also for the formation of 3'-5'-phosphotriester linkages.

Nucleic acids which carry terminal polyphosphate groups are from a biological point of view important naturally occurring compounds'.

Up to now, two types of phosphorylating agents (i.e. the monofunctional and the bifunctional agents μ^2 and μ^3 , respectively) have been applied successfully for the introduction of **di- and triphosphates at the 5'-end of nucleic acids by a phosphotriester approach. For instance, phosphorylation4 of the 5'-OH of a partially protected nucleic acid phosphotriester** intermediate (ROH) with <u>l</u>a affords a 5'-phosphotriester derivative la (X=OR; Y=2,4-C1₂C₆H₃; Z=SMe). Selective removal of Y from 1a thus obtained gives the 5'-phosphorothioate 1a (X=OR;

$$
C1 = C1; Y = -0
$$

\n
$$
X - P - Y
$$

\n
$$
C1 = 25
$$

\n
$$
C1 = 25
$$

\n
$$
C1 = 25
$$

\n
$$
C1 = -5
$$

\n
$$
C1 = -5
$$

\n
$$
C1 = -5
$$

Y=OH; Z=SMe), which can be converted, according to Nussbaum et a1.5, into the corresponding 5'-mono, di- or triphosphate derivatives. Recently, we reported⁶ that the phosphorylating agent 1b could serve the same purpose. In this particular case, phosphorylation of a similar 5'-OH function gives the phosphotriester 1b [X=OR; Y=OBT; Z=-N(C₂H_A)₂0] from which the benzotriazolyl (OBT) group can be removed selectively to afford the phosphoromorpholidate 1b [X=OR; **Y=OH; Z=-N(C2H)20]. The latter can now be converted, according to the original procedure of** Khorana et al. $^{\prime}$, into the required 5'-phosphorylated nucleic acids derivatives.

We now report that S-4-methylphenyl-0,0-bis[l-benzotriazo]yl]phosphorothioate (3) is in several aspects more convenient than agents la,b and, further, that it can also be used for **the formation of 3'-5'-internucleotidic linkages.**

The phosphorylating agent β is readily attainable as follows. Treatment 8 of methoxydichlorophosphine with 4-methylphenylsulfenyl chloride gives, after distillation, 2 as a colourless

$$
MeO-PCI2 + Me2SCI \longrightarrow MPS-PCl2 \longrightarrow MPS-POH2
$$

$$
\frac{2}{3}
$$

solid [Yield: 84%; b.p. 125^oC/2 mm Hg; $31P-NMR$ (CDCl₃) 6 33.36 p.p.m.]. A solution of the

latter in dioxan was converted into 2 by the addition of equimolar amounts of pyridine and lhydroxybenzotriazole. After 1 h at ZO'C, the pyridinium HCl salt was filtered off to give a stock solution (0.2 M) of 2 in dioxan.

The synthesis of the 5'-phosphates 6 and 7 of thymidine was realized as follows. A solu-

(i): H₂O/I₂, (ii): H₂O/C₅H₅N. (iii): H₃PO₄/ I₂.

tion of 3'-O-diphenylacetyl-thymidine⁹ $\underline{4}$ (1 mmol), which was previously dried by coevapora**tion with pyridine, in dioxan was added to a stirred solution of 2 (1.1 mmol). TLC-analysis,** after 15 min at 20^oC, showed the absence of 4. Intermediate 5 (R^1 =DPA; R^2 =BT) thus obtained **was hydrolyzed with water-pyridine. Monitoring of this step by 31 P-NMR spectroscopy revealed** instanteneous conversionof 5 (R⁻=DPA; R⁻=BT: δ_n 32.08 and 31.67) into 5 (R⁻=DPA; R⁻⁻=H: δ_n 15.19). Oxidative removal of the MPS-group from 5 (R²=H) to afford the 5'-phosphate 6 (R¹= **DPA) was effected by the addition of iodine (10 equiv.) to the reaction mixture. Also in this** case, 31 P-NMR spectroscopy showed a rapid (within 5 min) conversion of 5 (R¹=DPA) into 6 (R¹= DPA: δ_n -0.56). Crude 6 thus obtained gave, after basic hydrolysis of the DPA-group, and consecutive purification by anion-exchange chromatography (DEAE-Sephadex A25) pure 6 (R¹=H: δ_p 0.24) in 80% overall yield. For the preparation of Z, intermediate 5 (1 mmol; R^1 =DPA; R^2 = **BT) was firstly hydrolyzed with water-pyridine and, after 5 min, concentrated to a small volume. The mixture was then repeatedly coevaporated with dry pyridine containing tri-n-butylammonium phosphate (15 equiv.). The formation of the pyrophosphate function was effected by** adding iodine (10 equiv.) to the above solution of $\frac{1}{2}$ (R¹=DPA; R²=H). ³¹P-NMR analysis of the **reaction mixture showed rapid (5 min) formation of** \tilde{Z} **(R¹=DPA:** δ_n **8.70, 10.58, J 23.2 Hz).** Further processing of crude χ (R¹=DPA), as described for the preparation of 6 (R¹=H), gave homogeneous 7 $(R^1=H)$ in 75% overall yield.

The introduction of a 3'-5'-phosphotriester linkage using 3_was firstly exemplified by the synthesis of the fully-protected RNA dimer 11. The 2',5'-protected uridine derivative g^{10}

(1 mmol) in dry pyridine was treated with 2 (1.15 mmol). TLC-analysis, after 20 min at 20°C, showed complete conversion of 8 into 9 having zero mobility. A solution of 2',3'-protected uridine 10¹¹ (1.3 mmol) in pyridine containing N-methylimidazole (5 equiv.) was added to 9. **TLC-analysis, after 20 min at 20°C, showed the formation of dimer J.J. Work-up of the crude** product, followed by short column chromatography, afforded homogeneous 11 (8_p 23.69 and **24.34) in a yield of 71% (based on 2). A small amount of dimer JJ was completely deblocked by** removing¹² firstly the MPS-group with syn-pyridine-2-carboxaldoxime and N^1, N^1, N^3, N^3 -tetramethylguanidine¹³. The different acid-labile [R¹=2-hexadecyloxy-4',4"-dimethoxytrityl; R²=tetra**hydropyranyl and the 2',3'-O-methoxymethylidene** (MM)1 **groups were removed in the following or-**<code>der. Group R $^{\text{1}}$ was deblocked by a short treatment with aq. HOAc. The acetic acid was removed $\it in$ </code> *and the solution was adjusted to pH 2 (0.1 N HCl: removal of the THP and ring opening of* **the MM group) and left for 24 h at 20°C. The solution was basified (pH 8) with aq. ammonia** and further processed, to give, after purification, homogeneous UpU (δ_n -0.20).

The versatility of agent 2 was further illustrated by the regioselective introduction of a

3'-5'-phosphotriester bond (i.e. 13) and, also, by the synthesis of dimers 14. Thus addition of \$4 (1.3 mmol) to 2, under the same conditions as used for the preparation of Il, gave dimer 13 (o_p 24.69 and 25.19) in 73% yield. The conversion of 13 into dimers 14 (R³=H and R³= -CH₂CH₂CN) was performed in two different ways. In the first approach, a solution of 13 (1 mmol) in pyridine was phosphorylated with 3 (1.15 mmol) to give, after 20 min at 20⁰C, intermediate 14 (R^3 =BT). The latter was hydrolyzed with water to afford 14 (R^3 =OH), which could be **isolated by extraction, followed by precipitation, as the triethylammonium salt in 85% yield.** In the second approach, intermediate 14 (R^3 =BT) was converted *in situ* by the addition of an excess of β -cyanoethanol into $1.4 \left(R^3 = -CH_2CH_2CN\right)$, which could be isolated, after column chro**matography, in a yield of 81%. Complete deblocking of 14 thus obtained was as follows. Treat**ment of 14 with N^1, N^1, N^3, N^3 -tetramethylguanidine (9 equiv.) resulted in the instanteneous **elimination, as followed from ³¹P-NMR spectroscopy, of the ß-cyanoethyl group. Addition of syn-pyridine-2-carboxaldoxime (10 equiv.) to the above mixture released the internucleotidic YPS-protecting group. The MPS-group at the 3'-phosphodiester was now removed by oxidation** with iodine, and the R¹ and R² groups by acid. Purification of the crude product afforded UpUp, which was identical, ³¹P-NMR (6_p 1.30 and -0.18) and TLC-analysis¹⁵ (R_f 0.51), with the **product obtained after complete deblocking of 14 (R3=OH). Furthermore, enzymatic digestion of the UpUp compounds, prepared by the two different approaches, were completely digested, as followed by TLC-analysis and monitoring of the enzymatic process by 31 P-NMR spectroscopy, by** RNase to give solely uridine-3'-phosphate $(\delta_{p}$ 1.72; R_f 0.63).

In conclusion, we believe that the easily accessible agent 3 promises to be very conve**nient for the introduction of polyphosphate functions at the terminal ends of nucleic acids.** It also seems to be an alternative for the existing procedure¹² in which the cyclohexylammo-

nium salt of S,S-diphenylphosphorodithioate has been used for the preparation of ArS-protected intermediate internucleotidic phosphotriester linkages. At present, we are studying in detail¹⁶ the scope of the new agent 3 in nucleic acids and sugar chemistry.

ACKNOWLEDGEMENT

This work was supported by the Netherlands Foundation for Chemical Research (SON), with financial aid from the Netherlands Organisation for the Advancement of Pure Research (ZWO).

REFERENCES AND NOTES

- 1. **a) A.G. Hovanessian, R.E. Brown and** I.M. **Kerr, Nature (London), 268, 537 (1977); b) K.** Miura, Adv. Biophysics, 14, 205 (1981).
- 2. **C.B. Reese and L. Yau, J. Chem. Sot., Chem. Comm., 1050 (1978).**
- **3. G.A. van der Marel, C.A.A. van Boeckel, G. Wille and J.H. van Boom, Nucl. P.cids Res.,** lo, **2337 (1982).**
- **S.S. Jones and C.B. Reese, J. Amer. Chem. Sot., 101, 7399 (1979).**
- **2: A.F. Cook, M.J. Holman and A.L. Nussbaum, J. Amer. Chem. Sot., 91, 1522 (1969).**
- **6. a) C. Schattenkerk, G.M. Visser, G.A. van der Mare1 and J.H. van Boom, Nucl. Acids Res., 11, 7545 (1983); b) G.M. Visser, C. Schattenkerk and** J.H. **van Boom, Reel. Trav. Chim. Pays-Bas, 103, 165 (1984); c) G.M. Visser, R. Keemink, C. Schattenkerk, B. Kraal and J.H. van Boom, Nucleosides and Nucleotides,** 3, **277-286 (1984).**
- **7. J.G. Moffatt and H.G. Khorana, J. Amer. Chem. Sot., 83, 649 (1961).**
- **8. a) K. Sasse in Hethoden der Organischen Chemie (Houben-Weyl), Band** XII/Z, **Organische Phosphorverbindungen, Teil 2, vierte auflage, 11, pg 597, ed. E. Hiiller, George Thieme Verlag, Stuttgart, F.R.G. (1964); b) L.N. Shitov and B.M. Gladstein, Z. Obsc. Khim., 2, 2340 (1968).**
- **G.A. van der Marel, Ph.D. Thesis, Leiden University (1982).**
- J.H. **van Boom and C.T.J. Wreesnann in Oligonucleotide Synthesis: A Practical Approach, ed.** M.J. **Gait,** I.R.L. **Press, Oxford, U.K. (1984), 153-183.**
- **11. B.E. Griffin, M. Jarman, C.B. Reese and** J.E. **Sulston, Tetrahedron, 3, 2301 (1967).**
- **12. T. Kamimura, M. Tsuchiya, K. Urakami, K. Koura, M. Sekine, K. Shinozaki, K. Miura and T. Hata, J. Amer. Chem. Sot., 106, 4552 (1984) and references cited therein.**
- C.B. Reese and L. Zard, Nucl. Acids Res., 9, 4611 (1981).
- **:::** B.E. Griffin, M. Jarman and C.B. Reese, 1etrahedron, 24, 639 (1968).
- **15. Eluens: aq. ammonium acetate** (1 **M): ethanol, 3:7, v/v. Solid phase: DC-Alufolien Cellulose F (Merck).**
- **16. Experimental evidence so far obtained indicated that agent 3 has the same favourable phos**phorylating properties as 2-chlorophenyl-0,0-bis[1-benzotriazolyl]phosphate [C.T.J. Wreesmann et al., Nucleic Acids Res., 11, 8389 (1983) and references cited therein] and, further, that the pyridine-2-carboxaldehyde oximate ion-promoted unblocking of the MPS**group from dimer 11 proceeds four times more slowly than the removal, under the same con**ditions, of the 2-chlorophenyl group from a similarly protected UpU dimer.

(Received in UK 7 December 1984)